
Download free eBooks at bookboon.com

Go Faster!

174 

Part III: Disk-Based Implementation

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

175 

General Disk Considerations

11  General Disk Considerations 

11.1 Introduction

So far in this book I’ve tacitly assumed—for the most part, at any rate—that the entire database is in main memory at 

run time. Now I need to consider what happens if that assumption is invalid (which will usually be the case in practice, 

of course). Such is the purpose of this part of the book. 

Now, I claimed in Chapter 1 that divide-and-conquer is always a good pedagogical approach, and I appealed to that fact 

as my justiication for largely ignoring disk-speciic issues prior to this point. But there’s more to it than mere pedagogy; 

the fact is, divide-and-conquer can be a good approach to design problems as well. he reason is that, in general, making 

simplifying assumptions and sticking with them for as long as possible can serve to clarify issues that might otherwise 

remain comparatively opaque. By way of one example, it was the initial assumption of a static, read-only database that led 

to the highly original TR approach to updating described in Chapter 6. By way of another, it was the initial assumption 

that everything could be kept in main memory that led to the (again highly original) logical data transforms described 

throughout the chapters in Part II. 

Recall now that in Chapter 8 I characterized the TR data representation as permutations and histograms; that is, the 

logical data transforms just mentioned can be thought of as transforms that map a direct-image version of the data into 

such permutations and histograms. So when we get to a disk-based implementation, the question becomes: How can 

we transform those permutations and histograms still further in order to get the best possible representation of them in 

terms of storage structures on the disk? In other words, what physical transforms should we now carry out on the already 

logically transformed data? Observe how divide-and-conquer comes into play again; we don’t even begin to think about 

looking for a good physical transform until we’ve carried out a good logical transform irst. hat’s because (as the history 

of direct-image implementations strongly suggests) it’s hard to ind an optimized disk representation if we don’t have an 

optimized main-memory representation to start with. 

What I want to do, then, in the rest of this chapter and in the next three, is describe a particular set of physical transforms 

that can be used in TR in order to achieve “main-memory performance of the disk” (to put matters catchily, if not all 

that precisely). he present chapter considers the problem in general terms; the next three chapters then go on to discuss 

certain highly TR-speciic approaches to that general problem. 

Please note that this part of the book, even more than Part II, is not meant to be exhaustive. Rather, it’s meant to give 

you some idea of what’s involved in producing a good disk-based implementation of the TR model, without getting too 

deeply into numerous variations and alternative possibilities. My major aim is to convince you that a good disk-based TR 

implementation is indeed feasible, and what’s more is likely to display some very attractive characteristics (performance 

characteristics in particular). 

I should say too that this part of the book does assume you’ve read Part II carefully and mastered the key ideas contained 

therein—probably by doing the exercises as recommended (though you might be glad to hear there aren’t any exercises 

in Part III). 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

176 

General Disk Considerations

Let me close this section with a couple of points of terminology that I’ll be relying on throughout what follows. First, I 

remind you from Chapter 1 that I use the term memory, unqualiied, to mean main memory speciically. Second, I’ll use 

the term memory-resident to mean that the pertinent data, whatever it might happen to be, has already been brought into 

memory before we need it at run time. 

11.2 What's the Problem? 

Clearly, the disk implementation problem in general terms is simply to minimize the time it takes to ind the data we 

want and read it of the disk. So let’s briely review what’s involved in that “inding and reading” process. here are two 

main aspects to consider: 

•	 Seek time: his is the time it takes to move the disk read/write head from its current position to the 

desired block or page. Seek times are measured in milliseconds (msec); they can be anything from 2 to 

60 msec, with 6 msec being a good typical igure. By contrast, a typical “seek time” for memory might be 

60 nanoseconds (nsec); thus, disk access is around 100,000 times, or ive orders of magnitude, slower than 

memory access. he implications are obvious—we clearly want to jump around randomly on disk as little as 

possible; that is, we want to keep seek activity to a minimum. For otherwise we’ll be in a situation in which 

overall system performance is totally dominated by the time spent doing seeks on the disk. 

•	 Data rate: his is the speed at which data can be read of the disk once the read/write head has been 

positioned to the desired block or page. Data rates are measured in megabytes per second (MB/sec); they 

can be anything from 4 to 40 MB/sec, with 10 MB/sec being a good typical igure.1 However, several disk 

drives can be attached to the same I/O channel, and channel data rates can reach as much as 256 MB/

sec; thus, it might be possible by interleaving accesses to diferent disks to achieve an efective data rate 

across the channel of (say) 160 MB/sec or so. At that rate, if we take the average seek time to be 6 msec as 

suggested above, then one seek takes about the same amount of time as it takes to read one megabyte of the 

disk. What’s more, it also takes about the same amount of time as it takes to scan one megabyte of data in 

memory, at least to a irst approximation (I’m assuming here, not very realistically, that data is accessed in 

memory a single byte at a time). 

Note: Actually there’s a third aspect to the problem of inding and reading disk data, the latency or rotational delay aspect, 

which is the time spent waiting for the rotation of the disk to bring the desired block or page under the read/write head. 

For simplicity I’ve lumped this aspect in with seek time above. 

Let me now elaborate briely on the implications of considerations such as those above in the case of TR speciically. 

Observe irst that, from the user’s perspective, there are basically two general tasks that any DBMS needs to be able to 

perform (and perform well): 

a) Given a particular tuple, ind all of its attribute values; 

b) Given a particular attribute value, ind all of the tuples that contain it. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

177 

General Disk Considerations

Now, classical direct-image systems are quite good on the irst of these tasks (even on disk), but they’re not very good 

on the second (not even in memory). By contrast, TR is very good on both, at least so long as we limit ourselves to a 

memory-based implementation: 

a) Finding all attribute values for a particular tuple is basically the process of record reconstruction, using the 

appropriate zigzag in the Record Reconstruction Table; 

b) Finding all tuples with a particular attribute value is basically the process of doing a binary search on the 

appropriate column in the Field Values Table. 

But what happens on disk? he algorithms that work so well in memory clearly won’t work so well on disk. To be speciic, 

following zigzags and doing binary searches both efectively imply a lot of random jumping around, and disk performance 

is thus likely to be terrible unless we can come up with some good physical transforms. Such transforms are the subject 

of the remainder of this chapter. 

11.3 Addressing the Problem

In this section I’ll ofer some general remarks regarding those good physical transforms; in subsequent sections, I’ll focus 

in on some more speciic issues and go into more detail. However, I should warn you that those subsequent sections do 

unavoidably involve a certain amount of cross-referencing among themselves, because the techniques I’ll be describing 

aren’t all independent of one another. But irst things irst. 

First of all, then, we’d obviously like to have as much of the database as possible resident in memory at run time. One 

important technique for achieving this goal is data compression, which reduces not only the amount of space the data 

requires on the disk but also, and more importantly, the amount of space it requires in memory. (Of course, it also reduces 

the amount of time it takes to ind and read the data, and so it’s also relevant to the discussion of seek and read times 

below.) Sections 11.4 and 11.5 discuss speciic compression techniques that apply to the Field Values Table and the Record 

Reconstruction Table, respectively. 

Second, when we do have to access the disk because the data we need isn’t memory-resident, we’d clearly like to minimize 

the amount of seeking we have to do. Several techniques are available to help here: 

•	 Large pages: Page sizes in today’s commercial DBMS products typically range from a minimum of one 

kilobyte, or even less, to a maximum of perhaps 64 kilobytes (1KB-64KB). As a consequence, the ratio of 

seek time to read time—“the seek-to-read ratio”—is usually quite high, ranging from around 1,000:1 for 1KB 

pages to around 16:1 for 64KB pages, if seek time is 6 msec and data rate is 160 MB/sec. In other words, 

most disk access time in today’s systems is typically taken up in seek activity. Using larger pages of (say) one 

megabyte each will clearly reduce the seek-to-read ratio to something much more reasonable (approximately 

1:1 for 1MB pages).  

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

178 

General Disk Considerations

Note: he foregoing analysis does tacitly assume that everything in the page in question is “useful,” in the sense 

that reading the whole page doesn’t mean bringing into memory—and taking the time to bring into memory—a 

lot of data that’s irrelevant to the purpose at hand. If we’re in a complex-query environment (a data warehouse 

system, for example), then this assumption isn’t too unrealistic. By contrast, if we’re in an environment in 

which the queries are comparatively simple—an OLTP system, for example2—then the design tradeofs might 

be diferent (in particular, smaller pages might be desirable). In what follows, I’ll tend to assume the complex-

query environment, where it makes any diference. 

•	 Streaming: Next, we try to arrange matters such that if page p2 is needed immediately ater page p1 at run 

time, then page p2 immediately follows page p1 on the disk. In this way, moving the read/write head from 

page p1 to page p2 involves little or no seeking, and data can be “streamed” of the disk into memory at 

a data rate close to the theoretical maximum. Note: he next item below, column-wise storage, is highly 

pertinent to this idea of streaming. 

•	 Column-wise storage: Both the Field Values Table and the Record Reconstruction Table are accessed column-

wise, at least initially (the Field Values Table when doing binary searches and the Record Reconstruction 

Table when starting to chase successive zigzags). For this reason, it’s a good idea to store both tables column-

wise on the disk, so that data items that are logically required together are physically close together on the 

disk. (In case it isn’t clear what I mean when I say the tables are stored column-wise on the disk, let me 

explain briely. In essence, what I mean is that column 1 is stored as a set of consecutive pages on the disk, 

then column 2 is stored as an immediately following set of consecutive pages, and so on.) 

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5


Download free eBooks at bookboon.com

Go Faster!

179 

General Disk Considerations

Note: he idea of storing the data column-wise is not so important (though certainly not unimportant) in the 

case of the Field Values Table, because that table will almost certainly be in memory at run time anyway (see 

Section 11.4). However, it’s very important in the case of the Record Reconstruction Table (see Section 11.5), 

and becomes even more so if the techniques of Chapter 14 are adopted. 

•	 Banding: We’ve seen that zigzags don’t work so well if they mean jumping all over the disk. Banding is a 

solution to this problem; it’s discussed briely in Section 11.6 and in more detail in Chapter 13. 

•	 Using stars instead of zigzags: Another solution to the problem of “zigzagging all over the disk” is to replace 

the zigzags by stars. Stars are also discussed briely in Section 11.6 and in considerably more detail in 

Chapter 14. 

•	 Controlled redundancy: Both banding and stars have the property that they can undermine the objective of 

symmetric performance (see Chapter 5, Section 5.2). We can address this problem by introducing a degree 

of controlled redundancy into the storage representations. Controlled redundancy is also discussed briely in 

Section 11.6 and in more detail in Chapters 13 and 14. 

11.4 Compressing the Field Values Table

Recall from Chapter 4 that the Field Values Table is the only TR table that contains user data as such. Recall too from 

Chapter 6 that although we refer to it as a table, it isn’t physically stored as a table; instead, as noted in the previous 

section, it’s stored column-wise, or in other words as a set of vectors (typically), one such vector for each column. And 

a variety of techniques, some primarily logical in nature and others more physical, are available for compressing those 

vectors. Let’s take a closer look. 

Logical Compression

By the term logical compression, I mean techniques that transform the data before it even reaches the disk, as it were. All 

of the techniques discussed in Chapters 8 and 9 fall into this category, including in particular the fundamental ones of 

condensing and merging columns. A variety of other possibilities also exist, including: 

•	 Mapping combinations of ields to a single column (see Chapter 8, Section 8.5). his technique allows two or 

more vectors to be replaced by one whose length is less—oten much less—than the sum of the lengths of 

the original ones. 

•	 Breaking ields into subields, also known as subield encoding (see below). his technique allows one long 

vector to be replaced by two or more much shorter ones. 

•	 And several others (again, see Chapter 8, Section 8.5). 

Note: File factoring is another logical compression technique that applies to the Field Values Table. However, that technique, 

though it does indeed have the efect of compressing the Field Values Table, usually has a much more dramatic efect on 

the Record Reconstruction Table, and it’s this latter compression that’s the real point. For that reason, I’ll defer further 

discussion of such factoring to the next section. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

180 

General Disk Considerations

By the way, regarding column condensing speciically, I’d like to remind you that the amount of compression achievable 

can be dramatic—recall the example from Chapter 8 of a relation representing drivers’ licenses, where the compression 

ratio was quite literally of the order of a million or so to one. On the other hand, column condensing won’t do much 

for a ield whose values are unique or almost unique; for such a ield, subield encoding (see below) or the techniques of 

Chapter 12 are likely to be more appropriate. 

Let me now explain the concept I’ve mentioned a couple of times already, subield encoding. Subield encoding represents 

an additional reinement on the basic idea of condensed columns. he objective is to reduce overall space requirements 

still further, by breaking a given ield into “subields,” each of which has far fewer distinct values than does the original 

ield overall. For example, suppose we have a relation containing one tuple for each phone number in the United States, 

giving the names of persons or organizations reachable via those phone numbers. Assume for deiniteness that there are 

200 million tuples in the relation, so the number of distinct values of the PHONE# attribute (equivalently, the number of 

distinct values of the PHONE# ield in the ile corresponding to the relation) is 200 million.3 Assume too for simplicity 

that the PHONE# ield is ten bytes wide, one byte for each digit. hen column PHONE# of the Field Values Table will 

require 2,000 megabytes, and column PHONE# of the Record Reconstruction Table will require 1,400 megabytes (two 

pointers per cell, each pointer requiring 28 bits), for a total of 3,400 megabytes. Note: I’m relying here and throughout 

my discussion of this example that pointers are only as big as they logically need to be. his concept is discussed in detail 

in Section 11.5. 

Note, however, that even though there are 200 million diferent phone numbers, there certainly aren’t 200 million diferent 

area codes—in fact, there are only a few hundred. For deiniteness again, let’s assume there are just 250 area codes, with 

an average of 800,000 phone numbers within each one (250 * 800,000 = 200 million). Let’s assume further that there are 

just 200 diferent preixes or “exchanges” within each area code (irst three digits of the phone number) and 4,000 diferent 

numbers within each area code and preix (last four digits). So let’s break the PHONE# ield down into three subields: 

AREA_CODE (three bytes), PREFIX (three bytes), and REST (four bytes). Here’s what happens: 

•	 Column AREA_CODE requires just 750 bytes (plus space for row ranges) in the Field Values Table, which 

we can ignore; 200 megabytes in the Record Reconstruction Table for pointers into the Field Values Table 

(each such pointer will be eight bits); and 700 megabytes in the Record Reconstruction Table for “next cell” 

pointers. 

•	 Column PREFIX requires just 600 bytes (plus space for row ranges) in the Field Values Table, which we can 

ignore; 200 megabytes in the Record Reconstruction Table for pointers into the Field Values Table (each 

such pointer will again be eight bits); and 700 megabytes for “next cell” pointers. 

•	 Column REST requires 16,000 bytes (plus space for row ranges) in the Field Values Table, which once again 

we can ignore; 300 megabytes in the Record Reconstruction Table for pointers into the Field Values Table 

(each such pointer will be twelve bits); and 700 megabytes for “next cell” pointers. 

he grand total is approximately 2,800 megabytes, or a saving of roughly 17.6 percent compared with the original 

igure of 3,400 megabytes. What’s more, this saving has been achieved even though the relevant portions of the Record 

Reconstruction Table have actually doubled in size. he point is, the relevant portions of the Field Values Table have 

efectively been reduced to zero size. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

181 

General Disk Considerations

Note: Suppose we decide not to include pointers from the Record Reconstruction Table into the Field Values Table (ater 

all, such inclusion was characterized as an “optional extra” in Chapter 8, at the end of Section 8.3). hen the grand totals 

of 3,400 megabytes and 2,800 megabytes reduce to 2,800 megabytes and 2,100 megabytes, respectively, and the saving 

becomes 25 percent. 

Physical Compression 

I’m using the term physical compression to mean techniques that efectively treat the output from the logical compressions 

discussed above—condensing, merging, and so on—simply as a set of very long bit strings and compress those bit strings 

“mechanically,” without paying any attention to what those bit strings might represent. Under this general heading, there’s 

just one point I want to discuss in any detail: namely, the fact that, in TR, such bit strings are always stored bit-aligned on 

the disk, instead of being aligned on (say) a fullword or four-byte boundary. By way of example, suppose we have a ield 

F of type INTEGER; assume for the sake of the example that type INTEGER denotes integers in the range -231 to 231-1. 

Suppose, however, that ield F actually holds values in the range 0 to 99 only. In a conventional system, each F value will still 

require four bytes of storage. In TR, by contrast, it will require only seven bits—a saving of over 78 percent (see Fig. 11.1). 

Fig. 11.1: Bit alignment (example) 

EXPERIENCE THE POWER OF 

FULL ENGAGEMENT…

     RUN FASTER.

          RUN LONGER..

                RUN EASIER…

READ MORE & PRE-ORDER TODAY 

WWW.GAITEYE.COM

Challenge the way we run

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf


Download free eBooks at bookboon.com

Go Faster!

182 

General Disk Considerations

In addition to the foregoing, conventional physical compression techniques might also be used. Front compression is an 

example (see Chapter 2); since the ield values in any given Field Values Table column are sorted into sequence, front 

compression can be applied directly if desired (though I should point out that such compression will complicate the binary 

search and record reconstruction tasks somewhat). What’s more, the row ranges in any given Field Values Table column 

are sorted too (more precisely, they are in ascending sequence by either the range begin points or the range end points), 

and they can therefore be compressed as well. 

Net Efect

he net efect of all of the above is that the Field Values Table is always memory-resident, at least to a irst approximation. 

Startling though this claim might appear at irst sight, on relection it should seem plausible enough; ater all, how many 

distinct attribute values do real databases actually contain? (And note that this rhetorical question appeals only to the idea 

of logical compression. Physical compression can only make the situation better.) Note: Even in those rare cases when the 

Field Values Table is not 100 percent memory-resident, there are still eicient ways of accessing it on the disk. Details of 

what’s involved in such cases are beyond the scope of this chapter, however. 

So—assuming that the Field Values Table is indeed memory-resident—we’ve now solved one of our two original problems: 

All binary searches on columns of that table will be done in memory, not on disk. 

here are a few further points I want to make to close this section. 

•	 First, as we’ll see in the next section, reducing the size of the Field Values Table reduces the number of bits 

needed to represent pointers into that table as well. In other words, reducing the size of the Field Values 

Tables reduces the size of the Record Reconstruction Table as well. 

•	 Second, in computing the size of a given Field Values Table, we ought by rights to take the space required 

by the row ranges into account as well (even though it’s likely that those row ranges will be physically stored 

separately from the ield values per se). Now, if Field Values Table column C contains N values, then the 

corresponding row ranges will require a total of N log N bits—probably much less space than the N values 

themselves require. Perhaps we might say to a irst approximation that row ranges cause the overall size of 

the Field Values Table to double, though I think their efect is likely to be much less than that in practice. 

But it’s simpler—given that I’m usually not trying in this book to do precise analyses—just to assume that if 

the Field Values Table without row ranges is small and can it into memory, then the Field Values Table with 

row ranges is also small and can it into memory too. In other words, I’m going to ignore the space required 

for row ranges from this point forward. I don’t believe this simplifying assumption has any material efect on 

any of the arguments to come. 

•	 hird, I’ve said the Field Values Table is stored column-wise. Now, in Chapter 4 I mentioned the fact that 

certain other systems, both prototypes and commercial products, “store the data attribute-wise.” he two 

notions aren’t directly comparable, though. To be speciic, in TR we’re not really talking about storing some 

attribute of some user-level relation at all; rather, we’re talking about storing some condensed, merged, 

and possibly otherwise transformed column of the Field Values Table,4 and as we’ve seen there’s no direct 

correlation (in general) between a user-level attribute and a Field Values Table column. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

183 

General Disk Considerations

11.5 Compressing the Record Reconstruction Table

he subield encoding example in the previous section illustrates a point that you might or might not have realized for 

yourself, but is in any case worth calling out explicitly. To be speciic: In any real database, the amount of space required 

for the Field Values Table is likely to be negligible compared to the space required for the Record Reconstruction Table. In 

other words, the Record Reconstruction Table in any real database is likely to be orders of magnitude bigger than the Field 

Values Table, and so we’d deinitely like to ind ways to compress it if we can. he trouble is, the Record Reconstruction 

Table contains what are in efect permutations, and permutational data is notoriously hard to compress. Even so, there are 

some useful things we can do ... his time I’d like to discuss physical compression techniques irst. 

Physical Compression

My irst point has to with TR pointer size. As I explained in Chapter 2, the pointers we’re talking about, though conceptually 

addresses, certainly aren’t physical addresses, neither on disk nor in memory. In TR, in fact, they aren’t even of constant 

size—they aren’t all 32 bits in length, for example. Rather, the pointers within any given Record Reconstruction Table 

are just as big as they need to be. For example, given the Record Reconstruction Table of Fig. 11.2 (a copy of the Record 

Reconstruction Table from Fig. 4.3 in Chapter 4), it’s clear that there are only ive diferent pointer values, and three bits 

are thus suicient to represent any of them. 

Fig. 11.2: Record Reconstruction Table for the suppliers ile of Fig. 4.1 

Recall now that (of course) the Field Values Table is condensed. If we expand the Record Reconstruction Table of Fig. 

11.2 to include direct pointers into (say) the CITY column of the condensed Field Values Table, then those pointers will 

require only two bits, not three, because there are only three distinct CITY values and not ive. More realistically, suppose 

there were 100,000 rows in the uncondensed Field Values Table but only 20 distinct CITY values; then the pointers we’re 

talking about would require only ive bits instead of the 17 they would otherwise require (217 = 131,072).5 In general, the 

space saving could be considerable (over 70 percent, in this particular example). 

Like other data, pointers in TR are bit-aligned on the disk (in particular, therefore, they aren’t necessarily even byte-

aligned, let alone word-aligned). 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

184 

General Disk Considerations

While I’m on the subject of pointer size, let me explain something else that might possibly have been bothering you. Suppose 

we’re using an overlow structure to hold newly inserted values as described in Chapter 6 (Section 6.5). hen pointers in 

that overlow structure don’t necessarily have to be the same size as their counterparts in the main database. Suppose, for 

example, that a given ield in the main database contains exactly 128 distinct values, so that associated pointers are just 

seven bits, and then a new 129th value is inserted (implying that seven bits are no longer adequate). hen pointers in the 

overlow structure might have to be eight bits—or not, as the case may be—but pointers in the main database won’t have 

to change in size until such time as the merging process is done (that is, until the overlow structure is merged in with 

the main database, as described in Chapter 6, Section 6.5). 

Back to physical compression techniques for the Record Reconstruction Table. Here are some relevant considerations. 

•	 First of all, we don’t have to include those direct pointers from the Record Reconstruction Table into 

the Field Values Table anyway; they’re there (as explained in Chapter 8) merely to speed up the record 

reconstruction process, and they aren’t logically necessary. So we could delete them if desired (and we 

probably would, on the disk). 

•	 Second, even if we do include those direct Field Values Table pointers ater all, we can at least apply (for 

example) front compression to them, since their values within any given Record Reconstruction Table 

column are at least guaranteed to be in ascending sequence. 

•	 hird, we’ve seen that compressing the Field Values Table has the desirable side-efect of reducing the size of 

those direct Field Values Table pointers anyway. 

•	 Fourth, suppose the Record Reconstruction Table is a “cyclic” one (refer to Chapter 7, Section 7.5, for an 

explanation of this term). hen, within any given column of that table, the zigzag pointers corresponding to 

a given ield value within the Field Values Table are also guaranteed to be in ascending sequence; they can 

therefore also be compressed. 

However, despite all of the above, the fact remains that the Record Reconstruction Table is still likely to be quite large 

in practice. By way of an example, suppose we start with a user-level relation of ten attributes and 200 million tuples. 

Suppose we decide not to include direct pointers from the Record Reconstruction Table into the Field Values Table; for 

simplicity, however, suppose also that the table isn’t a cyclic one, and so the compression techniques applicable to such 

tables aren’t available. hen we’re going to need a total of two billion pointers of 28 bits each, for a grand total of seven 

billion bytes. What can we do about this problem? 

Logical Compression 

Before I attempt to ofer an answer to the question just posed, let me irst say a little more about the problem of zigzags 

on the disk. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

185 

General Disk Considerations

Now, I’ve already explained that the Record Reconstruction Table is stored column-wise on the disk. By way of example, 

consider Figs. 11.3 and 11.4, which show the Field Values Table for the parts relation from Chapter 8 and a corresponding 

Record Reconstruction Table (the igures are identical to Figs. 8.6 and 8.4, respectively, in Chapter 8). To keep the example 

simple, I’ve omitted the direct pointers from the Record Reconstruction Table into the Field Values Table. 

Fig. 11.3: Field Values Table for parts 

Fig. 11.4: Record Reconstruction Table for parts 

Now consider the query “Get all red parts.” In order to implement this query, the system will do an in-memory binary 

search on the COLOR column of the Field Values Table and will discover that the corresponding row range is [4:6]. hen 

it’ll go to the COLOR column of the Record Reconstruction Table and chase three zigzags, beginning at cells [4,3], [5,3], 

and [6,3], respectively. (Recall that in the subscript expression [i,j], i is a row number and j is a column number.) 

From this example, we can see that we certainly want to store cells [4,3], [5,3], and [6,3] contiguously in storage; that is, 

column-wise storage for column CITY of the Record Reconstruction Table is obviously desirable. And, of course, analogous 

arguments show that column-wise storage is desirable for every column of that table. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

186 

General Disk Considerations

But the problem is, even if (in terms of our example) we start chasing the zigzags from contiguous locations, we very 

quickly ind ourselves performing essentially random lookups “all over the disk.” Indeed, the three zigzags actually look 

like this in the example: 

•	 [4,3], [1,4], [1,5], [1,1], [4,2] 

•	 [5,3], [3,4], [2,5], [4,1], [6,2] 

•	 [6,3], [6,4], [3,5], [6,1], [3,2] 

In other words, although the starting points are physically contiguous, the zigzags quickly splay out to what are essentially 

random positions within the Record Reconstruction Table—efectively implying a separate seek and read operation for 

every point ater the starting point in each zigzag, if the zigzag in question isn’t in memory at run time. 

So reducing the size of the Record Reconstruction Table (so that the zigzags can be in memory at run time ater all) is 

highly desirable. Such is the aim of ile factoring. File factoring can be regarded as a highly efective logical compression 

technique—so efective, in fact, that it’s likely to mean that large portions, at least, of the Record Reconstruction Table will 

be memory-resident ater all in any real database. And if we can achieve this desirable goal, we’ll have solved the other of 

our two original problems: All zigzagging through that table will be done in memory, not on disk. 

File factoring is described in detail in the next chapter. 

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9


Download free eBooks at bookboon.com

Go Faster!

187 

General Disk Considerations

11.6 Minimizing Seeks

In this section I want to consider, very briely, what happens if the techniques described in previous sections aren’t suicient 

to get everything into memory. If that’s the case, then we’ll still have to perform some degree of disk access at run time, 

and (as we saw in Section 11.3) we clearly want to keep the amount of seek activity involved in that process to a minimum. 

Now, I listed a variety of techniques in Section 11.3 for reducing run-time seeking. Just to remind you, here’s that list again: 

•	 Large page sizes 

•	 Streaming data of the disk 

•	 Storing data column-wise 

•	 Banding 

•	 Using stars instead of zigzags 

•	 Controlled redundancy 

Of these six items, I’ve said as much as I’m going to say regarding the irst three. he remainder of this section presents 

a brief overview of the rest. 

Banding

For simplicity, I’ve tended to talk in this book in terms of “the” Field Values Table and “the” Record Reconstruction Table, 

as if there were just one of each. In practice, of course, there’ll be not one but many of each; loosely speaking, there’ll be one 

of each for each user-level relation—though as we already know, in the case of the Field Values Table(s) in particular, the 

picture is complicated somewhat by the possibility (or likelihood, rather) of column merging and certain other features of 

the TR model.6 However, there’ll certainly be many Record Reconstruction Tables, in general, and banding will lead to more. 

Banding is an attack on the problem of zigzags that splay out all over the disk. he basic idea is to split the original ile 

(conceptually) into a set of horizontal bands,7 and then to treat each such band as a ile in its own right, with its own TR-

level representation. In other words, each band will have its own Field Values Table and its own Record Reconstruction 

Table—implying in particular that zigzags within any given Record Reconstruction Table will be wholly contained within 

the relevant band. Band size is chosen such that any given band will it entirely into memory at run time, and bands are 

laid out on the disk in such a way as to facilitate streaming data of the disk. See Chapter 13 for further discussion. 

http://bookboon.com/


Download free eBooks at bookboon.com

Go Faster!

188 

General Disk Considerations

Using Stars Instead of Zigzags 

Like banding, stars too are an attack on the problem of zigzags that splay out all over the disk. Recall from Chapter 5, Section 

5.8, that the linkage information that ties together the ield values for a given record doesn’t have to be implemented as a 

zigzag speciically—other possibilities exist, and stars are one such. Basically, stars are functionally equivalent to zigzags 

but have diferent performance characteristics. In particular, they avoid the splay problem and thus reduce the amount 

of random seeking required. See Chapter 14 for further discussion. 

Controlled Redundancy

Banding and stars both have the property that access based on one particular ield, the so-called characteristic (or core) 

ield, will perform better than access based on any other; that is, access via any ield other than the characteristic one 

will involve more seeks than access via the characteristic one. In other words, as noted in Section 11.3, symmetry of 

performance will be lost (see Chapter 5, Section 5.2, for a discussion of this notion). We can address this problem by 

introducing a degree of controlled redundancy into the storage structures. See Chapters 13 and 14 for further discussion. 

Endnotes

 

1. he term megabyte is sometimes deined to mean exactly one million bytes, sometimes 220 = 1,048,576 bytes. 

Similarly, the term kilobyte is sometimes deined to mean exactly one thousand bytes, sometimes 210 = 1,024 

bytes. he diferences aren’t signiicant for our purposes. 

2. OLTP = online transaction processing. 

3. I’ve no idea how realistic the numbers are that I’m using in this example, but they’re good enough to 

illustrate the point I want to make. 

4. Or some column of the Record Reconstruction Table, since that table is also stored column-wise—but here 

the parallel with conventional attribute-wise storage is even weaker. 

5. I note in passing that the pointers we’re talking about here (namely, the ones appearing “irst” in each Record 

Reconstruction Table cell) act as surrogates for ield values in exactly the manner explained in Chapter 5, 

Section 5.6. he others (the ones appearing “second” in each such cell) can be regarded as surrogates too, but 

the decoding mechanism by which the ield values are obtained from those surrogates is slightly diferent in 

the latter case. 

6. In the extreme, in fact, there could be just one Field Values Table ater all. I’ll discuss this possibility further 

in Chapter 15 (Section 15.2). 

7. “Horizontal” because the splitting occurs “between records,” as it were. 

http://bookboon.com/

